Home > A Level, GCSE, Maths, Teaching > What a fantastic puzzle!

What a fantastic puzzle!

When I logged on to twitter this evening I saw this tweet from Colin Beveridge (@icecolbeveridge):

image

Being the sort of person that seems a maths puzzle and finds it impossible not to have a crack at it I had a go.

xy=3 x+y=2 what is 1/x + 1/y?

My thoughts process was fairly straight forward:

xy=3 so it follows that  x=3/y and hence 1/x = y/3. Likewise xy=3 so y=3/x and hence 1/y = x/3. Thus, 1/x + 1/y = x/3 + y/3 = (x+y)/3 = 2/3 {as we know x+y=2}.

It seemed a straight forward puzzle, I noticed some tweets including complex numbers and thought they were odd, “Professor Yaffle” (@adamcreen) then tweeted a much simpler solution:

1/x + 1/y = (x+y)/xy =2/3

Which I thought was lovely. Then Colin asked “how would your students tackle it?” I thought “Grrr, it’s the holidays so I can’t try it on them for a fortnight!” Then I about it a bit and decided that on the whole they would probable try to solve the simultaneous equations using substitution.

x+y =2 so y=2-x
xy=3 so x(2-x)=3
2x – x^2 = 3
x^2 -2x + 3 = 0

Hang on, there are no real solutions to that quadratic! My non-further maths students would stop there stumped, my Further Students would work through using complex numbers. I thought I check another substitution:

xy = 3 so y=3/x
x+y=2
x+3/x=2
x^2+3=2x
x^2-2x+3=0

Yep, that’s the same quadratic so I haven’t made any silly errors. I figured that if you followed this through with complex numbers you must end up with the same answer, but wanted to check:

x=(2+(4-12)^1/2)/2
Or
x=(2-(4-12)^1/2)/2
So
x=(2+(-8)^1/2)/2
Or
x=(2-(-8)^1/2)/2

Root (-8) = i2root2

x=1+i(2)^1/2 or 1-i(2)^1/2

Meaning y is the complex conjugate of x in each case (by substitution back into original equations).

So 1/x + 1/y = 1/(1+i(2)^1/2) + 1/(1-i(2)^1/2) = (1+i(2)^1/2 + 1-i(2)^1/2)/(( 1+i(2)^1/2)(1-i(2)^1/2)

Which, of course, simplifies to 2/3.

What a delightful puzzle! There are no real values for x and y, but the answer is a lovely, real, rational number! I thoroughly enjoyed exploring it, and I hope my Further maths pupils will enjoy it too. I’m not sure whether to give it to my other A Level pupils or not, I will decide over the holidays. I am definitely going to give it to some of my year 11s though. We’ve just hammered algebraic fractions, and this is going to be an extension task!

Advertisements
  1. No comments yet.
  1. April 4, 2014 at 9:19 pm
  2. April 5, 2014 at 7:17 pm

Comments welcome......

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: