Home > A Level, Maths, Resources, Starters, Teaching > Rectangle Puzzle

Rectangle Puzzle

At some point over the last few days Danny Brown (@dannytybrown) tweeted this puzzle:

image

The picture shows a unit square with two congruent rectangles and a number of triangle. I looked,at the puzzle, saw no obvious answer, realised it would need a bit of thought so saved the photo until I found some time.

Yesterday I had some time, so I started by sketching the puzzle and filling in things I knew:

image

I quickly realised that the angles for all the triangle were the same, and thus they were all similar. (For some reason I missed one of the triangles on this page.) I couldn’t work out how I could find a missing length. I worked out the length if the diagonal of the rectangle using Pythagoras’s Theorem but it didn’t really help.

Then I drew some perpendiculars from each end of the diagonal and had a breakthrough.

image

If two rectangles share a diagonal, and a side length, then they must be congruent. This meant that I now knew the length of the bottom was 2x + 2y, as it’s a unit square then 2x + 2y = 1 so x+y=1/2.

I filled in these lengths:

image

Redrew my similar triangles and solved:

image

As no one likes an irrational denominator I rationalised as ended up with the satisfying solution 2-rt3.

I love this puzzle, and think it could be used as enrichment for high ability learners of many ages. After I’d solved it I looked at some solutions others had posted, and was thankful to see that other people also unnecessarily use trigonometry, and I was amazed I’d managed to avoid it, given my track record!

Advertisements
  1. No comments yet.
  1. No trackbacks yet.

Comments welcome......

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: