Home > Maths, Starters > Area Puzzle – Squares and Circles

## Area Puzzle – Squares and Circles

This morning I came across this puzzle from Ed Southall (@solvemymaths): And it seemed interesting. Looking at it is seems that A is the midpoint of the arc, so equidistant from b and the lower left corner of the square. This would mean that an isosceles triangle exists in the semi-circle, which in turn implies the square has side length 4rt2 (from Pythagoras’s Theorem, as the side of the square is a diameter).

This means the square has area 32cm^2. The semi-circles have radius 2rt2 and as such have area 4pi. That leaves just the white circle. The diagonal of the square is a diameter of this, and as the side lengths are 4rt2 the diagonal must be 8 (again via Pythagoras’s Theorem). This means the circle must have a radius of 4 and hence an area of 16pi.

So the sum of the orange areas must equal the square add the 4 Semi-Circles subtract the circle add the square.

Or:

2(32) + 4(4pi) – 16pi

Which simplifies to 64cm^2.

A lovely solution, and one which shows us that the areas of the orange crescents equal the area of the square.

Towards the end of the working I realised I could have used another property of Pythagoras’s Theorem, namely that the sum of the areas of semi-circles on the two shorter sides equals the area of the semi-circle on the hypotenuse. By splitting the square into two right angled triangles I could have reasoned that the 4 smaller semi-circles provide the same area as the large circle. Which means we would get the total area to be the area of the square, add the area of the circle (from the semi-circles) subtract the area of the circle (from the circle) add the area of the square. Which again simplifies to twice the area if the square. A much more elegant solution.

Categories: Maths, Starters
1. April 23, 2015 at 4:56 pm

I think I’ve seen this before. A really nice solution to an intriguing problem, and the final answer it amazing really. Nobody would guess the shaded area is the same as the area of the square.