Home > A Level, Teaching > Proving Products

## Proving Products

Just now one of the great maths based pages I follow shared this:

So naturally I figured I would have a go. I thoughts just get stuck in with the algebra and see what happens, normally a good approach to these things.

My first thought was that if I use 2n – 3, 2n -1, 2n + 1 and 2n +3 then tgere would be less to simplify later. I know that (2n + 1)(2n – 1) = 4n^2 – 1 and (2n – 3)(2n + 3) = 4n^2 – 9 so I multiples these together.

(4n^2 – 1)(4n^2 -9) = 16n^4 – 40n^2 + 9

I thought the best next move would be to complete the square:

(4n^2 – 5)^2 – 16

This shows me that the product of 4 consecutive odd numbers is always 16 less than a perfect square and as such that the product of 4 consecutive odd numbers plus 16 is always a square.
(4n^2 – 5)^2 – 16 + 16 = (4n^2 – 5)^2
A nice little proof to try next time you teach it to your year 11s.

Categories: A Level, Teaching
1. June 27, 2017 at 4:55 pm

Some puttering around with the problem:
http://mymathclub.blogspot.com/2017/06/factoring-proof.html
I’ll have to try it out next year with real kids.