Home > Commentary, Curriculum, Maths, Pedagogy, Teaching > When will I use this?

When will I use this?

Recently I read a rather interesting article from Daniel Willingham about whether there were people who just cant do maths. It was a very good read and I hope to write my thoughts on it later, when I’ve had more time to digest the material and form some coherent thoughts, but there was one part that set me off on a train of thought that I want to write about here.

The part in question was discussing physical manipulatives and real life examples. Willingham said that there is some use in them but that research suggests this can sometimes be overstated as many abstract concepts have no real life examples. He then spoke about analogies and how they can be very effective in maths of used well.

This got me thinking, earlier on the day a year 12 student had asked me “when am I ever going to use proof in real life?”. This type of question is one I get a lot about various maths topics, and my stock answer tends to be “that depends what career you end up in”. Many students, when asking this, seem to think real life doesn’t mean work. A short discussion about the various roles that would use it and that its possible they never will if they chose different roles but that the reasoning skills it builds are useful is usually enough and certainly was in this case.

It does beg the question though “why do they only ask maths teachers”? Last week when a y10 student asked about “real life” use of algebraic fractions I asked him if he asked his English teachers when he’d need to know hiw to analyse an unseen poem in real life. He said no. I asked if he thought he would. Again no.

So why ask in maths?

The Willingham article got me thinking about this. There has been, throughout my career, a strong steer towards contextualising every maths topics. Observers and trainers pushing “make it relate to them” at every turn. But some topics have no every day relatable context.Circle theorems, for instance, are something that are not going to be encountered outside of school by pretty much any of them. So maybe thats the issue. Maybe we are drilling them with real life contexts too much in earlier years, and this means when they encounter algebraic fractions, circle theorems or proof and don’t have a relatable context the question arises not from somewhere that is naturally in them, but from somewhere that has been built into them through the mathematics education we give them.

Maybe we should spend more time on abstract concepts, ratger than forcing real life contexts. Especially when some of those contexts are ridiculous – who looks at a garden and thinks “that side is x + 4, that side is x – 2, I wonder what the area is?” (See more pseudocontext here and here).

What do you think? Do you think we should be spending more time lower down om the abstract contexts? Please let me know in comments or via social media.

Advertisements
  1. No comments yet.
  1. No trackbacks yet.

Comments welcome......

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: