AS levels are a weird thing. They are no longer a component part of the A Level, they are very early in the exam session and it seems to me an unnecessary added pressure.

Last year we took a decision as an academy not to enter pur maths students for the AS exams. We did this to maximise pur teaching time and avoid unnecessary stress. This year the decision was taken at trust level to enter them in all subjects.

I can now see two sides of the argument. Last year our students focussed heavily on their other subjects and not maths as they had external exams for those subjects. This meant we lost teaching time and their homework suffered during exam season. This year we have not finished all the content early enough to really focus the revision. I really dont know whats best. I do think, however, that it is important to have a decision made for all subjects.

*Are you entering your students for AS Levels? I’d love to know if you are or not and why you made that decision. You can answer in thw comments or on social media.*

Some of them asked if they could move to foundation, I think its best for them. 1 student got 32 marks over 3 higher papers, did the 3 foundation and was well over 100. 1 student got 40 marks over 3 higher papers spent 30 mins in a foundation paper and got 60 marks. The grade 5s they want seem more achievable on foundation.

My issue lies with a few students desperate to do higher and try for 6s. Scoring around 50 marks over 3 higher papers it seems a risk. But having taught them both i feel that it’s within their capabilities. But from November to march they have made only tiny gains in marks. On the ine hand, foundation means they cant get a 6 and for at least one of them means rethinking post 16 choices, but on the other hand sitting higher means they might end up with only a 4 or less and thst would mean rethinking post 16 again. It’s tricky, any thoughts are welcomed.

]]>The first student had not attempted it. While looking at it I ran through it quickly in my head. Here is the method i used jotted down:

I thought, “what a nice simple proof”. Then I looked at the markscheme:

There seemed no provision made in the markscheme for what I had done. *(Edit: It is there, my brain obviously just skipped past it)* *How did you approach this question? Please let me know via the comm*ents *or social media.*

Anyway, some of my students gave some great answers. None of them took my approach, but some used the same as the markscheme:

And one daredevil even attempted a geometric proof…….

]]>They came out if the exam on monday, and said the paper was very difficult. One of them asked me one of the questions:

*“Sir, if you have a box of cereal and increase it by 25% but keep the price the same, what percentage would you need to decrease the price of the original box by to get the same value?”*

I immediately said “20%”, an answer which flummoxed the student and the others stood around. They couldn’t work out how I had got that answer, never mind so quickly.

I tried to explain it to them, but in that moment, on the corridor, I didn’t do a very good job. For me, it was intuitive. A 25% increase and a 20% decrease would yield the same value as in one you are changing the top of a fraction and the other the bottom of a fraction so you need to use the reciprocal, 4/5 is the reciprocal of 5/4 and 4/5 is 80% hence it needs to be a 20% decrease. Cue blank looks and pained expressions. I was seeing the students again later in an intervention session so I promised to go through it in more detail then.

I talked about the idea of value, how you could consider mass/price and get grams per penny – how many grams for each penny you spend – or you could consider price/mass and get penny per grams – how much you pay per gram. I said either of these would give an idea of value and you can use either in a best value problem.

I showed them the idea of the fraction, said you could call the price x and the size y.

The starting scenario is:

*y/x*

The posed scenario is:

*1.25y/x*

but we know 1.25 is 5/4 so that becomes:

*(5/4)y / x*

which in turn is:

*5y/4x*

I then showed that the second scenario meant getting to the same value but altering x. To do this you would need to mutiply x by 4/5:

*y/(x(4/5))*

*(y/x)÷(4/5)*

*(y/x) × (5/4)*

*5y/4x*

This managed to show some of them what was going on, but others still massively struggled. I tried showing them with numbers. 100 grams for £1. This again had an effect for some but still left others blank.

*I’m now racking my brains for another way to explain it. If you have a better explanation, please let me know in the comments of via social media!*

On a monday, however, instead of a link to a blog you get a lovely post written by teacher tapp that analyses the data for the previous week. You see how questions are answered by subject, by phase, by geographical location and many other factors where there are interesting differences.

This week some of the questions related to World Book Day. One of the pieces of information that I found interesting was that students in poorer areas are more likely to be asked to dress up for world book day. The teacher tapp post seemed to think this was counter intuitive as the families at these schools would have less money to create outfits etc, and I can see that logic. However, I see another side.

1 in 8 children from disadvantaged backgrounds don’t own a book of their own. Many more have few books of their own. Libraries are closing in droves and school libraries appear to be being replaced by “learning centres” that put a higher emphasis on new technologies than books. This suggests that many of these children who have no books of their own have little access to books at all. I’m sure that children from disadvantaged area’s are far less likely to read for fun, due to the lack of access to books. There are many reports that reading for fun increases the chance of success and it definitely increases literacy which is key to learning pretty much any subject.

I feel that this means world book day is much more important in deprived areas than in the more affluent areas. The about us section on the world book day website states that the charity is on a mission to give every child a book of their own, lots of children in deprived area’s dont have one, buti would be willing to wager that the vast majority of chikdren in affluent area’s do. World book day gives all children a voucher they can exchange for a book, which in itself is great, but its also a great opportunity to promote reading for fun. Which is something i feel we all shoukd be promoting all the time.

]]>This week I was teaching simultaneous equations and a student asked a question that made me think about things so I thought i would share.

I was teaching elimination method and I had done some examples with the coefficients of y having different signs and I put one on the board with the same signs and asked the class to think how we may go about solving. One of the students in the class put uo his hand after a while and said he thought he had solved it.

5x + 4y = 13

2x + 2y = 6

I asked hime to talk us through his thinking and he said “first I multipled the bottom equation by -2”

5x + 4y = 13

-4x – 4y = -12

“then I added the equations as before”

x = 1

“Then I subbed in and solved.”

2 + 2y = 6

2y = 4

y = 2

“so the point of intersection is (1,2)”.

This wasn’t what I was expecting. I was expecting him to have spotted we could subtract instead, but this method was clearly just as correct. It wasn’t something I had considered as a method before this, but I actually really liked it as a method and it led to a good discussion with the class after another student interjected with her solution which was what I expected, to multiply by 2 and subtract.

It was a great start point to a discussion where the students were looking at the two methods, and understanding why they both worked, the link between addition of a negative and subtracting a positive and many more.

*I was wondering, does anyone teach this as a method? Have you had similar discussions in your lessons? What do you think of it?*

I know what you are thinking, “why are you up so early? It is sunday and it is summer!” And you are right to wonder. Usually its my body clock that makes it so, but this year my 6 year old daughter has taken on that responsibility. Argh.

This year has been a good one for me. Tough in places, but enjoyable over all. I work at a school where I like my colleagues, like the vast majority of the students, feel that the department I work in is strong and that the senior leadership know what they are doing and are making decisions that are pushing the school in the right direction. When I moved to my current school, which was in the process of academy conversion following a 4 Ofsted grading, part of the draw was the chance to be part of affecting a positive change and improving the chances of the students. In the 2 years I’ve been here I’ve seen massive improvements and can see the trajectory we are on.

There’s been some tough times, but there has been some good ones too and I look forward to next year and our next steps in the journey.

This year I’ve spent a lot of time improving subject knowledge amongst the department. I feel this is something that needs to continue. It was made necessary this year as we had a number of non specialists and trainees in the department and most of the experienced maths teachers had never taught the new content that is now on the GCSE. This is something that needs to conrinue next year. We have no non specialists next year, but do have NQTS, trainees and staff who still wont have taught the new content. These sessions allow not only for building content knowledge but also for discussing subject specific pedagogy and possible misconceptions.

I’ve also thought a lot about transition from KS2 to KS3, this has been driven in part by a need to improve this area and in part by a fascinating workshop we hosted led by the Bradford Research School. I hope to write more about the workshop and the fascinating findings I’ve had while looking at KS2 sats data, nationally and locally, and the KS2 curriculum. Suffice to say, if you are a secondary teacher who hasn’t looked, your year 7s probably know a considerable amount more than you think they do on arrival.

The KS2 sats provide some great data and there really is no need to retest students on entry. Except maybe the ones who have no data. I’ve always been averse to KS2 SATS but the data they produce is so rich I feel I’m coming round to them. Although I’m not sure I agree with the way they are currently reported and I certainly stand against the idea of school league tables.

I’ve not written as much as I would have liked on here this year, and I hope to change that going forward. I didn’t decide to blog less, it just sort of happened, so hopefully I can turn that around.

Now it’s summer, I’m looking to relax, have fun and to teach my daughter how to enjoy a lie in….

]]>Eid al-Fitr is an important day in the Islamic faith. Muslims start it out by attending the mosque for prayers, before sitting down to share a meal with their families, which will be the first time they have done this during daylight in a month.

I teach in a school where, I believe, around 30% of the student body practice Islam. This year has been particularly hard for year 11, as many have been observing the fast of Ramadan during their exam period and have had to miss important parts of their Eid rituals and celebrations in order to sit their final exams. Eid al-Fitr, and Eid al-adha – the most important Islamic holiday, follow the Islamic calendar and as such move year on year. Next year, Eid al-Fitr falls on June the 4^{th}, the same day as one of the English Language GCSE exams, which ALL y11 students will sit, along with Business and music exams. This date will also feature A Level papers for English Language, English Lang and lit, art, RS and Chemistry.

Personally, I would advocate for all holidays of all the major religions to be made bank holidays as the UK becomes an increasingly wonderful multi-cultural and diverse place, but I understand we are a long way from that dream becoming a reality. However, I am certain that a more achievable goal is becoming a society that manages to schedule GCSE and A-Level exams around such an important event.

Many students this year have been disadvantaged this year because they have had an exam on a day that is massively important to them, their families and their religion. GCSE exams that fell today cover science, taken by the vast majority of students, and Citizenship, an exam I would argue was extremely important. A level exams that fell today were PE, Economics, English literature, Mathematics, Further Mathematics and Chinese.

In the 2011 census Islam was the second biggest religion in the UK behind Christianity, and also the fasted growing religion. There are many local authority areas in the UK where more than 25% of the population follow the Islamic faith. These included Bradford, which is where I work, Blackburn, Luton and Birmingham. Some areas are over thirty, which includes Tower Hamlets, which has around 35% of its population following Islam.

GCSE and A Levels are important examinations; they massively affect the future of those that sit them. The stresses on students at this time is massively high and I feel that it is hideously unfair to make this more difficult on one subset of students purely based on their religion. To have a few fallow days during the exam period would mean what? Lengthening the session by a few days?! Surely it’s time we stopped punishing students for what they believe in.

]]>Here is the problem:

*What fraction of the area is shaded?*

What follows is my solution. Please attempt the problem before reading on, I’d love to see your approach.

Firstly,I did a sketch (of course I’d did. If you didn’t then why on earth not!)

I labelled the base of the rectangle 2x and the height b (it looked like a square, but I didn’t want to assume and figures if it was necessary to Ed would have told us). I realised that I was looking at 2 similar triangles (proof can be made using opposite and alternate angles), with a scale factor of 2 (the base of the bottom is double the base of the top). I know that when working with areas the scale factor is squares so using an area scale factor of 4, a for the height if the top triangle and (b – a) for the height of the lower triangle intake up with this equation:

Which solved to tell be b was 3a, thus b-a was 2a.

From here it was simple, I worked out the area of the shaded triangle and the whole rectangle put it as a fraction and simplified.

How did you do it?

]]>Last week I was discussing the problem wall with a colleague and this jumped out at me, so I thought I would give it a try. It took rather longer than I’d care to admit, to be honest. I set off on a few false starts and came up with some incorrect solutions due to an incorrect solution I’d made. After a while I gave up and left it a few days before tackling it afresh. When I retackled it the process was much shorter and gave me a lovely concise solution. I will explain some of my incorrect thought processes first, and then I will explain how I got my solution. Before reading on, why not have a go yourself – I’d love to hear how you approached it either in the comments or via social media.

**The problem:**

I’m not one hundred percent sure where I sourced this question, I think it’s from the great solvemymaths website – but if it’s not please let me know.

The first thing I did was a sketch; this led me to see that what we were dealing with was a quarter circle inside a square with a triangle. It had to be a square due to tangents from a point being equal and radii being equal. I also spotted that said triangle was an 8, 15, and 17 Pythagorean triple. These were observations that would be key when I eventually got round to solving the problem.

Then I made my mistake that caused a lot of issues. I marked the point that the triangle was tangent to the circle as the midpoint of the hypotenuse. Looking back now this is such a daft thing to do. I was pretty tired and must have briefly confused tangents and chords I guess. Either way, a silly and costly mistake. Using this I tried a coordinate geometry approach and got numbers that didn’t make sense. I knew the radius would have to equal 15 + y, but I was getting values less than 15 and y could not be negative as it was just a scalar length. I tried this approach a few times from different angles but each came up the same. I was convinced my algebra was correct, so the mistake must have been somewhere else. I left it for another day. Here are some of my incorrect workings:

T

he correct way:

When I came back to the problem, I had a clearer head and as soon as I sketched it I could see the way to answer it.

The point where the hypotenuse was tangent to the circle was not the midpoint, but it could be defined in other ways. Using tangents from a point from the points where the tangent intersects the sides of the square we can see that the hypotenuse must be the sum of the distances from said intersection points to the corners that are also tangent points to the circle. I.e. the lengths I marked x and z. Thus we know that x + z is 17, as that is the length of the hypotenuse of an 8, 15, 17 triangle. We also know, as it’s a square, that x + 8 is equal to the radius (labelled y in my diagram) and that z + 15 is also equal to the radius (y). Thus we have three equations in three unknowns so an easily solvable system that gives us the answer of y = 20. And hence area = 400pi.

A nice concise solution in the end to a lovely problem that caused me far too much headache. I’m off to kick myself some more…..

]]>