Archive

Archive for the ‘Maths’ Category

When will I use this?

June 4, 2019 Leave a comment

Recently I read a rather interesting article from Daniel Willingham about whether there were people who just cant do maths. It was a very good read and I hope to write my thoughts on it later, when I’ve had more time to digest the material and form some coherent thoughts, but there was one part that set me off on a train of thought that I want to write about here.

The part in question was discussing physical manipulatives and real life examples. Willingham said that there is some use in them but that research suggests this can sometimes be overstated as many abstract concepts have no real life examples. He then spoke about analogies and how they can be very effective in maths of used well.

This got me thinking, earlier on the day a year 12 student had asked me “when am I ever going to use proof in real life?”. This type of question is one I get a lot about various maths topics, and my stock answer tends to be “that depends what career you end up in”. Many students, when asking this, seem to think real life doesn’t mean work. A short discussion about the various roles that would use it and that its possible they never will if they chose different roles but that the reasoning skills it builds are useful is usually enough and certainly was in this case.

It does beg the question though “why do they only ask maths teachers”? Last week when a y10 student asked about “real life” use of algebraic fractions I asked him if he asked his English teachers when he’d need to know hiw to analyse an unseen poem in real life. He said no. I asked if he thought he would. Again no.

So why ask in maths?

The Willingham article got me thinking about this. There has been, throughout my career, a strong steer towards contextualising every maths topics. Observers and trainers pushing “make it relate to them” at every turn. But some topics have no every day relatable context.Circle theorems, for instance, are something that are not going to be encountered outside of school by pretty much any of them. So maybe thats the issue. Maybe we are drilling them with real life contexts too much in earlier years, and this means when they encounter algebraic fractions, circle theorems or proof and don’t have a relatable context the question arises not from somewhere that is naturally in them, but from somewhere that has been built into them through the mathematics education we give them.

Maybe we should spend more time on abstract concepts, ratger than forcing real life contexts. Especially when some of those contexts are ridiculous – who looks at a garden and thinks “that side is x + 4, that side is x – 2, I wonder what the area is?” (See more pseudocontext here and here).

What do you think? Do you think we should be spending more time lower down om the abstract contexts? Please let me know in comments or via social media.

Advertisements

Nice area puzzle

April 23, 2019 2 comments

Yesterday evening I came across this lovely area puzzle on twitter:

The puzzle is from Gerry McNally (@mcnally_gerry) he says its his first, and I hope that’s “first of many”.

I reached for the nearest pen and paper and had a quick go:

As you can see, I misread the puzzle originally and thought the lower quadrilateral was a square. The large triangle is isosceles as given in the question. This allowed me to use the properties of similar triangles and the base lengths given to work out the areas of the square, both right angled triangles and the whole triangle. This then allowed me to calculate the area of the shaded quadrilateral and hence that area as a fraction of the whole.

Then I went to tweet my solution to Gerry and realised that nowhere does it say that the bottom quadrilateral is a square. I had added an assumption. This made me ponder the question some more. Instincts told me that it didn’t have to be a square, but that the solution would be the sane whether it was a square or not. But I didn’t want to leave it at that, I wanted to be sure, so I had another go.

I sketched out the triangle again:

This time I called the height of the rectangle x.

This made it trivial to find the area’s of the rectangle and the triangle GCD. Triangle HAB was easy enough to find using similar triangle properties.

and then I found the area of the whole shape again using similarity to discover the height.

This allowed me to find the shaded area:

Then when I put it as a fraction the xs cancelled and it of course reduced to the same answer.

I really like this puzzle, and would be interested to see how you approached it, please let me know in the comments or on social media.

Proof by markscheme

March 16, 2019 2 comments

While marking my Y11 mocks this week I came across this nice algebraic proof question:

The first student had not attempted it. While looking at it I ran through it quickly in my head. Here is the method i used jotted down:

I thought, “what a nice simple proof”. Then I looked at the markscheme:

There seemed no provision made in the markscheme for what I had done. (Edit: It is there, my brain obviously just skipped past it) How did you approach this question? Please let me know via the comments or social media.

Anyway, some of my students gave some great answers. None of them took my approach, but some used the same as the markscheme:

And one daredevil even attempted a geometric proof…….

Cereal Percentages

March 13, 2019 Leave a comment

This week my Y11s are sitting mock exams. One of the questions that came up on paper 1 stumped a lot them.

They came out if the exam on monday, and said the paper was very difficult. One of them asked me one of the questions:

“Sir, if you have a box of cereal and increase it by 25% but keep the price the same, what percentage would you need to decrease the price of the original box by to get the same value?”

I immediately said “20%”, an answer which flummoxed the student and the others stood around. They couldn’t work out how I had got that answer, never mind so quickly.

I tried to explain it to them, but in that moment, on the corridor, I didn’t do a very good job. For me, it was intuitive. A 25% increase and a 20% decrease would yield the same value as in one you are changing the top of a fraction and the other the bottom of a fraction so you need to use the reciprocal, 4/5 is the reciprocal of 5/4 and 4/5 is 80% hence it needs to be a 20% decrease. Cue blank looks and pained expressions. I was seeing the students again later in an intervention session so I promised to go through it in more detail then.

I talked about the idea of value, how you could consider mass/price and get grams per penny – how many grams for each penny you spend – or you could consider price/mass and get penny per grams – how much you pay per gram. I said either of these would give an idea of value and you can use either in a best value problem.

I showed them the idea of the fraction, said you could call the price x and the size y.

The starting scenario is:

y/x

The posed scenario is:

1.25y/x

but we know 1.25 is 5/4 so that becomes:

(5/4)y / x

which in turn is:

5y/4x

I then showed that the second scenario meant getting to the same value but altering x. To do this you would need to mutiply x by 4/5:

y/(x(4/5))

(y/x)÷(4/5)

(y/x) × (5/4)

5y/4x

This managed to show some of them what was going on, but others still massively struggled. I tried showing them with numbers. 100 grams for £1. This again had an effect for some but still left others blank.

I’m now racking my brains for another way to explain it. If you have a better explanation, please let me know in the comments of via social media!

Categories: #MTBoS, GCSE, Maths Tags: , , ,

Simultaneous Equations

March 10, 2019 3 comments

It’s been a while since i last wrote anything here. Which says more about how busy I’ve been than my desire to write, but I hope to start writing more regularly.

This week I was teaching simultaneous equations and a student asked a question that made me think about things so I thought i would share.

I was teaching elimination method and I had done some examples with the coefficients of y having different signs and I put one on the board with the same signs and asked the class to think how we may go about solving. One of the students in the class put uo his hand after a while and said he thought he had solved it.

5x + 4y = 13

2x + 2y = 6

I asked hime to talk us through his thinking and he said “first I multipled the bottom equation by -2”

5x + 4y = 13

-4x – 4y = -12

“then I added the equations as before”

x = 1

“Then I subbed in and solved.”

2 + 2y = 6

2y = 4

y = 2

“so the point of intersection is (1,2)”.

This wasn’t what I was expecting. I was expecting him to have spotted we could subtract instead, but this method was clearly just as correct. It wasn’t something I had considered as a method before this, but I actually really liked it as a method and it led to a good discussion with the class after another student interjected with her solution which was what I expected, to multiply by 2 and subtract.

It was a great start point to a discussion where the students were looking at the two methods, and understanding why they both worked, the link between addition of a negative and subtracting a positive and many more.

I was wondering, does anyone teach this as a method? Have you had similar discussions in your lessons? What do you think of it?

Another Year Over

July 22, 2018 Leave a comment

So this is summer, and what have you done, another year over and a six week holiday just begun. – What Lennon may have written had he been a teacher.

I know what you are thinking, “why are you up so early? It is sunday and it is summer!” And you are right to wonder. Usually its my body clock that makes it so, but this year my 6 year old daughter has taken on that responsibility. Argh.

This year has been a good one for me. Tough in places, but enjoyable over all. I work at a school where I like my colleagues, like the vast majority of the students, feel that the department I work in is strong and that the senior leadership know what they are doing and are making decisions that are pushing the school in the right direction. When I moved to my current school, which was in the process of academy conversion following a 4 Ofsted grading, part of the draw was the chance to be part of affecting a positive change and improving the chances of the students. In the 2 years I’ve been here I’ve seen massive improvements and can see the trajectory we are on.

There’s been some tough times, but there has been some good ones too and I look forward to next year and our next steps in the journey.

This year I’ve spent a lot of time improving subject knowledge amongst the department. I feel this is something that needs to continue. It was made necessary this year as we had a number of non specialists and trainees in the department and most of the experienced maths teachers had never taught the new content that is now on the GCSE. This is something that needs to conrinue next year. We have no non specialists next year, but do have NQTS, trainees and staff who still wont have taught the new content. These sessions allow not only for building content knowledge but also for discussing subject specific pedagogy and possible misconceptions.

I’ve also thought a lot about transition from KS2 to KS3, this has been driven in part by a need to improve this area and in part by a fascinating workshop we hosted led by the Bradford Research School. I hope to write more about the workshop and the fascinating findings I’ve had while looking at KS2 sats data, nationally and locally, and the KS2 curriculum. Suffice to say, if you are a secondary teacher who hasn’t looked, your year 7s probably know a considerable amount more than you think they do on arrival.

The KS2 sats provide some great data and there really is no need to retest students on entry. Except maybe the ones who have no data. I’ve always been averse to KS2 SATS but the data they produce is so rich I feel I’m coming round to them. Although I’m not sure I agree with the way they are currently reported and I certainly stand against the idea of school league tables.

I’ve not written as much as I would have liked on here this year, and I hope to change that going forward. I didn’t decide to blog less, it just sort of happened, so hopefully I can turn that around.

Now it’s summer, I’m looking to relax, have fun and to teach my daughter how to enjoy a lie in….

Eid and Exams

June 15, 2018 2 comments

Today is the day that all the students in year 11 at my school, and I believe a majority across the school, sat their final GCSE paper. It was a physics paper. Today also happens to be Eid al-fitr. Eid is a holy day in the Islamic faith and marks the end of the holy month of Ramadan.

Eid al-Fitr is an important day in the Islamic faith. Muslims start it out by attending the mosque for prayers, before sitting down to share a meal with their families, which will be the first time they have done this during daylight in a month.

I teach in a school where, I believe, around 30% of the student body practice Islam. This year has been particularly hard for year 11, as many have been observing the fast of Ramadan during their exam period and have had to miss important parts of their Eid rituals and celebrations in order to sit their final exams. Eid al-Fitr, and Eid al-adha – the most important Islamic holiday, follow the Islamic calendar and as such move year on year. Next year, Eid al-Fitr falls on June the 4th, the same day as one of the English Language GCSE exams, which ALL y11 students will sit, along with Business and music exams. This date will also feature A Level papers for English Language, English Lang and lit, art, RS and Chemistry.

Personally, I would advocate for all holidays of all the major religions to be made bank holidays as the UK becomes an increasingly wonderful multi-cultural and diverse place, but I understand we are a long way from that dream becoming a reality. However, I am certain that a more achievable goal is becoming a society that manages to schedule GCSE and A-Level exams around such an important event.

Many students this year have been disadvantaged this year because they have had an exam on a day that is massively important to them, their families and their religion. GCSE exams that fell today cover science, taken by the vast majority of students, and Citizenship, an exam I would argue was extremely important. A level exams that fell today were PE, Economics, English literature, Mathematics, Further Mathematics and Chinese.

In the 2011 census Islam was the second biggest religion in the UK behind Christianity, and also the fasted growing religion. There are many local authority areas in the UK where more than 25% of the population follow the Islamic faith. These included Bradford, which is where I work, Blackburn, Luton and Birmingham. Some areas are over thirty, which includes Tower Hamlets, which has around 35% of its population following Islam.

GCSE and A Levels are important examinations; they massively affect the future of those that sit them. The stresses on students at this time is massively high and I feel that it is hideously unfair to make this more difficult on one subset of students purely based on their religion. To have a few fallow days during the exam period would mean what? Lengthening the session by a few days?! Surely it’s time we stopped punishing students for what they believe in.

%d bloggers like this: